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The Economics of Energy Storage in
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ABSTRACT

In a regulated market large scale storage of electrical energy, for example
by pumped storage, time shifts the generation of power and has been used to
defer generation investment. In a deregulated market power storage, when
used for energy rather than as a source of spinning or standby reserve or
frequency control, is a simple economic proposition: power is purchased
during periods of low price and regenerated and resold during periods of high
price. In this study historical diurnal price patterns in 14 deregulated markets
are analyzed to give an initial prediction of the economic incentive for energy
storage. We rank the 14 markets based on available revenue and potential
return on investment; the incentive to store energy varies significantly
between markets. The differences between markets arise because of different
diurnal patterns of power price. Diurnal price patterns in turn reflect a
complex set of factors in a market, including generation mix, market design
and participant behaviours.
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INTRODUCTION

Any storage of electrical power requires an investment in capital and
incurs the cost of inefficiency, i.e. the ratio of power recovered to power
consumed. Pumped storage, in which water is pumped from lower to a higher
water source and then later flowed from the higher source to the lower to
produce electricity, is one means of time shifting, or storing, electrical power.
It requires an investment in capital for reservoirs, penstocks, one or more
pump/turbo-generators, and associated switching and transformer equipment
to allow access to transmission. It consumes more power than it returns, due
to inefficiencies in pumping and generation. Power purchase is the most
significant operating cost, with maintenance and other operating costs being
relatively minor.

Pumped storage has been applied in regulated power markets (see, for
example, the first 4 references) to better utilize existing generation capacity
and postpone more costly investment in generation; the justification is a
reduction in the overall regulated price of power compared to the alternative
of investment in new primary generation. In deregulated markets, the sale of
electrical energy and/or ancillary services from pumped storage can be
evaluated based on each individual project: given a forecast diurnal power and
ancillary service price, does the revenue from the sale of power or services
less the cost of purchased power cover the capital recovery and other
operating costs?

In this study, we utilize historical power price data from 14 deregulated
markets to assess the incentive to implement pumped storage for electrical
energy; power price patterns in these markets have been analyzed by Li and
Flynn [References 5-8]. Each market has a unique average diurnal power
price profile that in turn leads to a unique price spread for pumped storage;
each market will also have its own maximum profitable operating duration,
i.e. the number of hours in which the revenue from the sale of power is higher
than the purchase cost of power required to pump the water into the reservoir;
this value is also dependent on the operating efficiency of pumped storage.
We use the diurnal price pattern and efficiency of storage to assess the net
income potential from energy sale from pumped storage for each market, and
rank the markets in terms of the incentive to invest in pumped energy storage.
We illustrate an optimal operating profile in detail based on historical price
patterns for one of the markets. We then combine the net income potential
with the capital and operating cost of pumped storage, and analyze the
adequacy of return on investment for pumped storage by two different
methods. First, we define a theoretical minimum level of investment in which
all factors align to minimize net capital cost and calculate the expected
maximum pre-tax return on investment for the 14 markets studied. Second,
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we determine the largest amount of investment per unit of power output that
can be justified in each market to earn a pre-tax return on capital of 10%.

Deb [Reference 9] illustrated a bidding strategy for both energy and
ancillary services sales in a day ahead market for which all prices are known.
Lu et al. [Reference 10] developed an optimal strategy for pumped storage,
including both the sale of electrical energy and ancillary services, for the New
York ISO based on historical prices. We focus on the sale of electrical energy
and do not include ancillary services in our comparison of the 14 deregulated
markets because data on the price of ancillary services is not readily available,
while price data for hourly or half hourly electrical energy is. In addition, the
specific provisions for purchase of ancillary services vary widely between
markets and are often different than those for the purchase of energy (for
example, purchase of ancillary services on a day ahead basis in markets where
energy is purchase on an hour ahead basis). We note, however, that any party
implementing pumped storage would have the potential to increase their
revenue in certain periods by selling ancillary services instead of energy.

1. POWER PRICE DATA

Table 1 summarizes the average of hourly or half hourly price data that
were analyzed by Li and Flynn for 14 different markets (all cost figures in this
study are expressed in 2004 USS). Table 2 shows the range of time over
which the original power price data was averaged. Average prices in the local
currency were converted to a single currency, USS, at the exchange rates as of
October 7™, 2004 [Reference 11], shown in Table 3. Note that deregulated
markets differ in the method by which the predominant power price is set; in
some markets it is based on an hour or half hour ahead bid, while in others it
is based on a binding day ahead bid, with a small hourly market for
adjustments in day ahead bid volumes. Price data in this study is the
predominant price, i.e. the price at which most of the power in the given
market is sold. Data cleaning, dealing with missing or duplicate data points,
was a minor issue, typically affecting less than 0.5% of data points and hence
not a significant source of error [Reference 5]. Fig. 1 illustrates a sample
average diurnal price pattern for weekdays and weekends in one market in
this study. Weekday and weekend price patterns for all markets in this study
can be found in Reference 5.

Diurnal price patterns in deregulated power markets are created by a
number of factors, including the generation mix and the market design and
operation. Generation mix, for example the blend of hydro, nuclear, coal and
gas fired power, will lead to significant shifts in the marginal bid price of
power as demand changes. Market design, e.g. binding day ahead vs. hour by
hour bidding, influences volatility.
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Table 2: Time span of power price data — Li & Flynn [Reference 5-6]

Market Frequency | Duration % of
data
cleaned

1. Canada: Alberta Hourly 96/01/01 - 01/12/31 0.02

2. USA: North California | Hourly 98/04/01 — 01/01/31 0.80

3. USA: PJM Hourly 97/04/01 — 01/12/31 0.73

4. USA: New England Hourly 99/05/01 — 01/12/31 0.87

5. Germany: Hourly 00/06/16 — 01/12/31 1.07

Leipzig Exchange
6. Netherlands Hourly 99/05/26 — 01/12/31 0.01
7. Britain Half Hourly | 96/01/01 —97/12/31, | 0.34
98/03/01 — 01/2/28
8.Spain Hourly 98/01/01 — 01/12/31 0.08
9. Scandinavia Hourly 92/05/04 — 01/12/31 0.03
10. Australia: Half Hourly | 98/12/13 — 01/12/31 0.01
South Australia

11. Australia: Half Hourly | 98/12/13 — 01/12/31 0.03
New South Wales

12. Australia: Half Hourly | 98/12/13 — 01/12/31 0.04
Queensland

13. Australia: Half Hourly | 98/12/13 — 01/12/31 0.04
Victoria

14. New Zealand: Half Hourly | 96/11/01 —01/12/31 0.04
Benmore

Table 3: Exchange rates

at October 7th, 2004 [Reference 11]

Market Currency Exchange rate USD
1. Canada: Alberta Canadian Dollar (CAD) 0.794
2. USA: North California_ | US Dollar (USD) 1.000
3. USA: PJM US Dollar (USD) 1.000
4. USA: New England US Dollar (USD) 1.000
5. Germany:

Leipzig Exchange German Mark (DEM) 0.628
6. Netherlands Euro (EUR) 1.228
7. Britain British Pound (GBP) 1777
8.Spain Euro (EUR) 1.228
9. Scandinavia Norwegian Kroner (NOK) 0.149
10. Australia:

South Australia Australian Dollar (AUD) 0.724
11. Australia:

New South Wales Australian Dollar (AUD) 0.724
12. Australia:

Queensland Australian Dollar (AUD) 0.724
13. Australia:

Victoria Australian Dollar (AUD) 0.724
14. New Zealand:

Benmore New Zealand Dollar (NZD) | 0.675
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Figure 1: Average diurnal power price, US$/MWHh, illustrated for Alberta
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Finally, there is evidence that the exercise of market power is related to the
effectiveness of market surveillance mechanisms in each market. All of these
factors help to create a unique daily pattern of average power prices that is
different for each deregulated power market.

The data set is dated, with no data points after 2001. However, it is the
only cross market data set spanning a large number of deregulated power
markets around the world, and hence it is useful for illustrating the wide range
of diurnal price patterns and their impact on the economics of the storage of
electrical energy. This study is illustrative of the feasibility of energy storage,
but one requirement before any investment in storage would be a review of
more recent price data in the proposed market.

2.  SALE OF POWER FROM PUMPED STORAGE

Fig. 2 shows a conceptual layout of a pumped storage facility. When
used for energy storage, the upper reservoir is typically filled on a daily basis,
usually in the late evening and early morning during periods of low power
demand and price, and drained during the day and early evening when
demand and price are high. The majority of pumped storage utilizes a
combined pump/turbo-generator, and efficiencies, measured as the power
recovered per unit of power input, have ranged from 0.60 in plants built
during the 1960’s to around 0.80 in the most recent plants [Reference 12-13].
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Figure 2: Typical layout of a pumped storage facility
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The ratio from the electrical input when pumping to the electrical output when
generating can range from 0.9 to 1.2. However the most common mode of
operation of the pump/turbo-generator is at constant power or an input to
output power ratio of 1 [Reference 14], and we assume this mode of operation
in our study. As a consequence, pumping time exceeds generating time by
(efficiency)™.

In a deregulated market, an operator does not know the system clearing
price for future unbid time periods, and there is ample evidence of sudden
changes in power price in markets where bids are gathered on an hour before
basis. However, an initial assessment of the profitability of pumped storage of
energy can be based on the long term average price behavior in a market. This
is valid for a pumped storage investment whose capacity is small relative to
the overall size of the power market. For very large or multiple pumped
storage investments, the storage facility (or any other investment in new
generation) will have an unknown impact on the diurnal price pattern. A
prediction of the impact of incremental pumped storage on future diurnal
patterns for 14 markets is beyond the scope of this study, and hence our
analysis is based solely on historical price patterns; limitations of this
approach are discussed below.

The operating strategy for pumped energy storage is to maximize the
spread between the value of power sold and power purchased. Thus, at 80%
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efficiency (used for the balance of this study) an operator would first identify
the expected highest priced hour, and plan on purchasing power in the 1.25
hours with the lowest cost. The operator would proceed stepwise in this
analysis until the cost of purchased power in 1.25 hours exceeded the cost of
power sold in one hour, less the variable operating cost. Most direct operating
costs associated with pumped storage, for example labor, are fixed rather than
variable relative to power generation; even routine maintenance, for example,
is typically scheduled on a fixed time interval rather than on operating hours.
Hence, variable operating costs within the plant are very low. However,
system operators can levy transmission access and dispatch charges that are
purely variable, i.e. tied to the number of MWh of power put on the grid.

In this study we developed an operating plan for each market based on
historical price patterns; Figure 3 illustrates such a plan for one market,
Alberta, Canada. In the plan, hours of operation increase as one progresses
down the table, and for each increment of time the available hour of highest
priced power (generation) and 1.25 hours of lowest cost power (pumping) are
determined. Clearly such a plan is specific to each market and to the assumed
efficiency; it would have to be recalculated if the operating efficiency of the
pumped storage were different than 0.8.

Figure 3: Operating plan illustrated for Alberta weekday operation with an
efficiency of 80%.
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From Figure 3 and the diurnal price pattern one can determine both the
average and the incremental power sale and purchase price for each
deregulated market. This is illustrated, again for the Province of Alberta,
Canada, in Figure 4.
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Figure 4: Incremental and cumulative average prices for generating from and
pumping into a pumped storage facility, illustrated for Alberta
weekday operation with an efficiency of 80%.
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From Figure 4 and the operating plan in Figure 3 one can then calculate
the expected incremental and average revenue per MWh of sold power from
operating pumped storage for the sale of energy as a function of daily
operating hours, by taking the difference in the value of power generated in an
hour less the cost of power for the 1.25 hours that were required to fill the
reservoir. Table 4 shows the details of the calculation for Alberta, Canada,
and Figure 5 illustrates graphically the incremental and average revenue for
Alberta, Canada; both Table 4 and Figure 5 are for weekday power prices. We
conducted this analysis for all 14 deregulated markets in this study for both
weekday and weekend power prices, and the profiles of incremental and
average revenue from energy storage and sale for an efficiency of 80% for
both weekday and weekend are shown in the Appendix. The profile identifies
the maximum economic operating period for a pumped storage facility: when
net revenue is negative, it does not make sense to continue operating pumped
storage. The profiles are, in essence, a signature of energy storage economics
that characterizes each market; they depend on both the diurnal power price
pattern and the efficiency of the energy storage project.
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Table 4: Revenue calculation by hr illustrated for Alberta weekday
operation of pumped storage with an efficienty of 80%

Pmp Gnrt Oprt Power Power Incrmnt Incrmnt Incrmnt Cumnet | Incrmnt Avg.
hrs/ hrs/ total price for price for pumping generating net revenue revenue revenue
day day hrs pumping generation powercst | power revenue uUss/ uss/ Uss/

USS/MWh USS/MWh uss/ revenue uss/ MW/ MWh MWh

MW uss/ MW/ day
day MWi/day day

1.00 0.80 1.80 38.71 151.28 38.71 121.03 82.31 82.31 102.89 102.89
1:25 1.00 225 38.79 151.28 9.70 30.26 20.56 102.87 102.80 102.87
2.00 1.60 3.60 38.79 130.76 29.09 78.46 49.37 152.24 82.28 95.15
2.50 2.00 450 39.63 130.76 19.82 52.30 3249 184.72 81.22 92.36
3.00 240 5.40 39.63 11.959 19.82 47.84 28.02 21211 70.05 88.64
375 3.00 6.75 41.19 119.59 30.90 71.75 40.86 253.60 68.10 84.53
4.00 320 7.20 41.19 119.47 10.30 23.89 13.60 267.20 67.98 83.50
5.00 4.00 9.00 42.63 119.47 42.63 95.58 582.95 320.15 66.19 80.04
6.00 480 10.80 | 43.77 119.03 43.77 95.23 51.46 371.60 64.32 77.42
6.25 | 5.00 11.25 | 51.80 119.03 12.95 23.81 10.86 382.46 54.28 76.49
7.00 5.60 12.60 | 51.80 115.97 38.85 69.58 30.73 413.19 51.22 7378
7.50 6.00 1350 | 54.44 115.97 21.22 46.39 19.17 432.36 47.92 72.06
8.00 6.40 14.40 | 54.44 114.37 27.22 45.75 18.53 450.89 46.32 7.45
8.75 7.00 15.75 | 78.05 114.37 58.53 68.62 10.09 460.98 16.82 65.52
9.00 7.20 16.20 | 78.05 114.15 19.51 22.83 3.32 464.30 16.59 64.49
10.00 | 8.00 18.00 | 78.52 114.15 78.52 91.32 12.80 477.10 16.00 59.64
11.00 | 8.80 19.80 | 93.02 110.58 93.02 88.46 -4.55 472.55 -5.69 53.70
11.25 | 9.00 | 20.25 | 98.85 110.58 2471 2212 -2.60 469.95 -12.98 52.22
12.00 | 9.60 21.60 | 98.85 110.04 74.14 66.02 8.1 461.84 -13.52 48.11
1250 | 10.00 | 22.50 | 106.43 110.04 53.21 44.01 -9.20 452.64 -23.00 45.26
13.00 | 10.40 | 23.40 | 106.43 107.43 53.21 42.97 -10.24 442.40 -25.60 42.54
13.33 | 10.67 | 24.00 | 107.43 107.43 35.81 28.65 -7.16 43523 -26.86 40.80
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Figure 5 also illustrates the critical impact that variable operating costs,
i.e. charges levied per unit of power sold, can exert on pumped storage.
Examples include dispatch fees levied by a system operator and transmission
access charges. We studied in detail two specific locations in Alberta:
Kneehills, a medium head site using a natural prairie coulee as a reservoir by
building an earthen dam, and Grande Cache, a high head mountainous site
that would have the potential to use existing mining pits as reservoirs. From
the perspective of the transmission system operator, one of these locations is
far more favored than the other because it releases power into an area of net
power consumption, and hence helps relieve transmission congestion. This is
reflected in a different access charge between the two locations, and the
impact, from Figure 5, is that operating hours would be lower for one location
than the other: the transmission access charge is enough to remove any net
revenue from operating past 7 hours in the case of Kneehills, while the Grand
Cache location is forecast to make incremental net revenue by operating for
an additional 1 hour per day. (This analysis presumes that at Grande Cache
sufficient transmission capacity is available during the periods of power
purchase, e.g. during the late evening and early morning hours.) Hence any
prospective energy storage facility must assess location specific transmission
charges in addition to expected power price patterns.

Figure 5: Pumped storage incremental and average revenue from energy sale
illustrated for Alberta weekday operation with efficiency of 80%.
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This data allowed us to finally calculate, for each of the markets, the
aggregate income from operating pumped storage. We blend an average of
five weekdays and two weekend days and rank the deregulated markets by
daily revenue potential, as shown in Table 5. For each market we also
calculated the annual average revenue that can be earned per MW of installed
capacity from pumped storage, assuming an on line availability factor of 97%:
results are shown in Figure 6 and illustrate the impact of 75% and 80%
efficiency. It is clear that deregulated power markets show substantial
differences in price patterns and that these in turn impact the economic benefit
of energy storage. Alberta, Canada has the highest potential annual income
from energy storage, in part due to its wide period of high power price, as
shown in Figure 1. There is negligible revenue potential in Scandinavia
because the price spread is so low that revenue from even the first hour of
generation is near zero, while Alberta, the Netherlands and two markets in
Australia show a significant revenue potential.

Table 5: Daily revenue from pumped energy storage in deregulated markets
with an efficiency of 80%

Power markets Weekday Weekend Weighted
ranked by cumulative cumulative Daily
annual revenue net revenue net revenue average
(US$/MW/day) | (US$/MW/day) | (US$/MWiday)
1. Canada: Alberta 477 194 395
6-Netherlands 389 62 296
12-Australia: Queensland 234 138 207
10-Australia: South Australia 231 100 193
7-Briatin 153 67 128
3-USA:PJM 148 62 123
2-USA: North California 120 91 11
4-USA: New England 56 211 101
8-Spain 96 57 85
13-Australia:Victoria 90 45 77
14-New Zealand:Benmore 76 52 69
11-Australia: New South Wales | 68 43 61
5-Germany:Leipzig Exchange 65 22 53
9-Scandinavia 0.30 0 0.21
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Figure 6: Annual revenue (US$(000)/MW/Yr) from a pumped storage facility
with 97% availability at 80% and 75% of efficiency.
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3. INVESTMENT IN PUMPED STORAGE

The ultimate test for energy storage is whether there is adequate return
on investment from the net revenue from purchase and resale of power. We
analyze this for pumped storage by two different methods, both subject to the
limitations noted above: income from sale of ancillary services, charges per
MWh for dispatch and transmission access, and the impact of the investment
in energy storage on future diurnal prices are not included in this study.

Our first approach is to define a theoretical minimum level of investment
in pumped storage, i.e. a theoretical project in which all factors align to
minimize net capital cost. This “best case” project would utilize existing
bodies of water for the upper and lower reservoir, and an adjacent
transmission line for access to the grid. Hence, the net investment in the
project would be for the land and access, penstock, reversible pump/turbine
and auxiliary machinery, power house, switchyard, investigation and
engineering. For a high head pumped storage facility we estimate this
investment to be US $275 per MW of capacity in a 550MW plant; Table 6
shows the breakdown of the estimated minimum cost plant. It is important to
note that investment in pumped storage has an economy of scale, i.e. the
capital cost is not directly proportional to the capacity [Reference 15]. Hence
project size affects economics, and return on investment is specific to a
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project size. 550 MW was chosen in this study as a typical large project size,
although we note that one recent project proceeded at | GW [Reference 16].

Table 6: Estimated capital cost for an idealized mimimum investment pumped
storage case

High Head 5.50 MW USS
Land and Access 2,777,778
Upper and Lower Reservoir 0
Penstocks 53,386,052
Powerhouse Structure 6,169,403
Power Plant Machiner 65,800,922
Interconnection & Transmission Line 0
Total 1 (Direct Costs) 128,134,154
Contingencies (10% Direct Costs) 12,813,415
Investigation and Engineering 6,272,289
Administration/Financinag 3,863,433
TOTAL 151,083,291
SKW 275

Figure 7: Pre-tax return on investment for an idealized minimum investment
pumped storage case.

738.5%

Return on Investment




146 Energy Studies Review Vol. 14, No. 2.

Figure 7 shows the expected return for the 14 markets in this study: the
values can be thought of as the maximum possible pre-tax return on
investment from pumped storage, since all real projects would have higher
investment than the “best case’ and thus a lower return. Hence, it is clear from
Figure 7 that pumped storage can never pass a minimum test of adequate
return, say 10% on capital deployed, in 6 of the 14 markets in this study. Note
that projects smaller than 550 MW would have a lower return on investment
than shown in Figure 7.

Our second approach is to determine the largest amount of investment
per unit of power output that can be justified in each market to earn a pre-tax
return on capital of 10%; Table 7 shows the values for each market in US
dollars per KW. Alberta’s historical diurnal price pattern would justify an
investment of US $1,190 per KW, while New England, Spain, Australia
Victoria, New Zealand Benmore, Australia New South Wales, Germany
Leipzig Exchange and Scandinavia would not justify an investment in excess
of US $300 per KW. It is again clear from Table 7 that no practical pumped
storage scheme operated for the purpose of time shifting of energy will be
justifiable in many deregulated power markets.

Table 7: Maximum investment to earn a return of 10% on capital, US$ per

KW
Market Allowable Investment
1-Canada:Alberta 1,190
6-Netherlands 858
12-Australia: Queensland 618
10-Australia: South Australia 579
7-Britain 382
3-USA:PJM 367
2-USA:North California 330
4-USA: New England 298
8-Spain 241
13-Australia:Victoria 226
14-New Zealand: Benmore 203
11-Australia: New Souoth Wales 177
5-Germany: Leipzig Exchange 154
9-Scandinavia ~0
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DISCUSSION

Electricity has a time value in any deregulated market. In such markets,
there is considerable volatility, and price patterns vary significantly from day
to day [References 5- 8]. However, from the perspective of energy storage and
resale on a diurnal cycle, the long term average price pattern in a deregulated
market gives a good first prediction of the potential revenue from the storage
and sale of energy.

In this work, we have used historical price patterns in deregulated
markets to compare the potential for energy storage, using pumped storage as
the model. All energy storage has both a capital cost and an energy
inefficiency (power out vs. power in); the key question for a project developer
is whether the expected net revenue from pumped storage justifies the capital
investment.

The revenue from energy storage in a deregulated market is determined
by the shape of the diurnal price pattern. Alberta, which has a long daily
period of high power price and a long evening/morning period of low price,
has the highest revenue potential for pumped storage identified in this study.
An hour by hour analysis of pumped storage is required to fully assess an
energy storage project. This study makes clear that in many markets, the
diurnal pattern simply does not justify any practical energy storage
application; the allowable investment, based on the revenue potential, is far
below the cost of any real project. Deregulated power markets are not all
alike.

We think of the process used in this study as a “first pass’ screening, i.e.
a method of first estimating the potential for energy storage in a given
deregulated market. When an opportunity for energy storage is identified,
several other factors need to be considered:

e [s the historical diurnal power price an accurate predictor of future
price? Two elements must be considered in an analysis of the
relationship between past and future prices: the likelihood of
different price patterns, and the impact of the pumped storage itself
on price patterns. Li and Flynn [Reference 7] did a time analysis of
power price patterns and found that some markets have experienced
a single period of high power prices. California and New Zealand
are examples of this, with the California price excursions being
related substantially to market bidding behaviors and the New
Zealand price behaviors being related to an unusually severe period
of drought. Neither of these circumstances is expected to reoccur in
the next 20 years (bidding behaviors in US markets are under closer
scrutiny and clearer rules, and the drought in New Zealand was
severe enough to have a low frequency of expectation). On the other
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hand, there are legitimate concerns of major power price swings, 1.e.
“boom and bust” pricing, due to delays in investment in new
generation capacity until prices are high coupled with a long
construction period for major power plants; this concern has led,
among other things, to a focus by some parties on separating energy
and capacity auctions in deregulated power markets. As well, as
noted above, simply building energy storage will have some impact
on the price patterns in the market, particularly if the capacity of the
storage is significant relative to the total market. In effect, energy
storage “smoothes” the diurnal power price pattern, although the
extent to which this is significant would depend on the amount of
storage relative to the total size of the power market. Thus anyone
screening investment in energy storage must give careful thought
about what historical prices to consider and how representative
these prices will be of future price patterns. As with all energy
projects, the projection of future price is a major determinant of the
viability of the project.

e  What is the certainty of future revenue from energy storage? Many
power markets have limited liquidity in the futures market, and
forward buying and selling of power is normally by “on peak™ and
“off peak™ blocks. The lack of liquidity means that an investor in
energy storage will have limited opportunity to lock in future
revenues, and instead will face the investment risk of possible future
changes in diurnal price pattern.

e  What is the impact of variable system charges on the net revenue?
As this study shows for two examples in Alberta, Canada, system
charges, in particular transmission access charges, can have a
significant impact on the net revenue available from energy storage.
Transmission related charges often are location specific, and this
impact would have to be factored in to any analysis of investment in
energy storage.

e Ancillary services can often be bid as an alternative to energy sales
[References 9,10,13,14,17], and a pumped storage operator could
make a day by day, and in some markets an hour by hour decision
about whether to sell ancillary services or energy; such a decision
would made based on maximizing expected revenue. The rules for
bidding ancillary services are too complex, and the price data too
difficult to source, to allow for the inclusion of an analysis of
ancillary services in this study of 14 different deregulated power
markets, but it would be a factor in analyzing any specific project.
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CONCLUSIONS

Fourteen deregulated power markets were assessed for the potential for
investment in energy storage, with pumped storage as the model investment.
Net revenue from energy storage and resale depends on the energy efficiency
of the project and the diurnal pattern of power price. There are significant
differences in historical average price patterns between the 14 deregulated
power markets. As a result, the potential for economic pumped storage varies
widely. Alberta, the Netherlands, Australia Queensland and South Australia
have some potential for adequate return on investment in pumped storage, but
for the majority of markets in this study the diurnal price pattern does not
justify the investment.
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Figure A: Profile of Incremental and Average Revenue from Energy
Storage and Sale Illustrated for 14 Deregulated Power Markets
with an Efficiency of 80%
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