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Abstract:  

This study investigates the performance of a novel neural network technique in the problem of price 

forecasting. To improve the prediction accuracy using each model’s unique features, this research 

proposes a hybrid approach that combines the k-factor GARMA process, empirical wavelet 

transform and the local linear wavelet neural network (LLWNN) methods, to form the GARMA-

WLLWNN process. In order to verify the validity of the model and the algorithm, the performance of 

the proposed model is evaluated using data from Polish electricity markets, and it is compared with 

the dual generalized long memory k-factor GARMA-G-GARCH model and the individual 

WLLWNN. The empirical results demonstrated the proposed hybrid model can achieve a better 

predicting performance and prove that is the most suitable electricity market forecasting technique. 
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1. Introduction 

 

 In a modern society, electricity has become a necessary commodity. Our daily lives depend on 

the consumption of electricity in various forms. Rapid evolution of industrialization in the last century 

has leaded to a phenomenal growth of electricity consumption and consequently, the tremendous rise 

in generation of electrical energy. More precisely, electricity is a key factor of production and 

economic development, since the electricity is an important complementary to other production 

factors. Hence, the consumption of electricity will rise due to the economic growth, which requires 

increased investment to enhance the production capacity to cover the real time demand. As a result, 

economic growth is a key determinant of electricity demand and any variation in electricity supply 

may influence several demographic and macroeconomic factors, such as gross domestic product 

(GPD) growth, population growth, etc. The importance of electricity continues to grow, notably for the 

expanding health and services sectors, for telecommunications technologies, and for energy industry 

sectors. 

However, the electricity spot prices are characterized by extreme load fluctuations, which cause 

large and infrequent jumps [Clewlow and Strickland 2000; and Weron et al 2004]. Furthermore, 

electricity prices exhibit some features such as; non-stationarity, high frequency, multiple seasonality 

(on annual, weekly, and daily levels), [Escribano et al 2011; Koopman et al 2007; and Knittel and 

Roberts 2005], hard nonlinearity, high volatility, long memory, high percentage of unusual prices, 

calendar effect, price spikes and mean reversion. Consequently, these behaviours may affect 

dramatically the spot prices. Therefore, unlike financial markets, electricity markets are characterized 

by specific price behaviours seeing that electricity is the unique product that cannot be economically 

stored [Flynn (2005), and Härdle and Trück (2010)]. In this framework, our research focuses on 

resolving the problem associated to the complexity of forecasting such prices and resolve the issue of 

the risk related to the high variability of the electricity prices. 

Many approaches have been presented in the literature to forecast electricity price. Due to the 

unique characteristics of electricity and the uncertainty of market and bidding strategies, electricity 

price forecasts become more complex than power load forecasting. In stark contrast to past markets, 

current electricity prices are often accompanied by many characteristics make the prediction of 

electricity prices very difficult. In the field of electricity price forecasting, broadly two methods; 

parametric and non-parametric, these two approaches are found to have been applied. In statistical 

models, autoregressive integrated moving average ARIMA (Contreras et al. (2003); and Heping and 

Jing (2013)), and generalized autoregressive conditional heteroscedasticity GARCH (Garcia et al. 

(2005); Ghosh and Kanjilal (2014) and Girish. (2016)) are used extensively.  

Nevertheless, these models do not consider the long memory behavior that characterizes the 

electricity prices, to overcome this limitation Granger and Joyeux (1980) and Hosking (1981) 

developed the fractional autoregressive moving average model. Baillie et al. (1996) and Bollerslev and 

Mikkelsen (1996) introduced the fractionally integrated generalized autoregressive conditional 

heteroscedasticity (FIGARCH) process to model finite persistence in the conditional variance. Many 

studies have applied these methods for the electricity prices (Koopman et al. (2007), Saâdaoui et al. 

(2012)). In the spectral domain, these processes have a peak for very low frequencies close to the zero 

frequency. Hence, it is remarkable that ARFIMA model is not able to model the persistent periodic or 

cyclical behavior in the time series. 

To overcome this insufficiency, Gray et al. (1989) introduced a second generation of the long-

memory model termed a generalized (seasonal) long-memory or Gegenbauer autoregressive moving 

average (GARMA) process, which has been established to estimate both the seasonality and the 

persistence in the data. On the other hand, in the frequency domain, the spectral density is not 

necessarily unbounded at the origin, as in the case of the ARFIMA model, but at any frequency  . In 

this sense, GARMA process presents a long-memory cyclical behavior at a single frequency  . 

Woodward et al. (1998) generalized the GARMA process to the k -factor GARMA process that allows 

https://www.sciencedirect.com/science/article/pii/S2211467X16300256#!
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the spectral density function to be not just located at a single frequency but presented a number k  of 

frequencies, identified as the Gegenbauer frequencies or G-frequencies. This model has been applied 

by numerous authors to reproduce the seasonal persistent patterns (Boubaker and Sghaier (2015), 

Caporale and Gil-Alana (2014), Caporale et al. (2012), Diongue et al. (2009), Soares and Souza (2006) 

and Diongue et al. (2004)). Concerning the estimation of the parameter’s k -frequency GARMA 

process, Gray et al. (1989), Woodward et al. (1998) and Beran (1999) considered the time-domain 

maximum likelihood method. Whitcher (2004) and Boubaker (2015) suggest estimation method in the 

wavelet domain founded on the maximal overlap discrete wavelet packet transform (MODWPT). 

Further, these statistical methods are often based on linear sequence analysis. So, it is often 

pointed out that the ability to capture nonlinear behavior and rapid changes in the electricity price 

process is limited, resulting in poor electricity price forecasting performance. To reproduce these 

patterns, we suggest hybrid modeling in this study. In the literature, many combination methods have 

been suggested to avoid the deficiencies related to single models (Yu et al. (2005); Armano et al. (2005); 

Tseng et al. (2002); Zhang (2003); Taskaya and Casey (2005); Valenzuela et al. (2008); Khashei and 

Bijari (2010); Tan et al. (2010); Sharkey (2002); Shafie-khah et al. (2011); Jiang et al. (2017); Ben Amor et 

al. (2018) and Jinliang et al.(2018)). Our approaches adopted can be divided into two categories the 

non-parametric methods such as the neuronal networks, and the parametric models termed 

generalized GARCH process.  

In the first approach, artificial neural networks (ANN) have been frequently adopted in the 

electricity market. Wang and Ramsay (1998), Szkuta et al. (1999), Anbazhagan and Kumarappan 

(2014), Ioannis and Athanasios (2016), Harmanjot et al. (2016); and Jesus et al (2018) adopted the 

neural networks to model and forecast the dynamics of intra-day prices. Zhang and Benveniste (1992) 

suggested the wavelet neural networks as an alternative to the conventional NNs (such as 

feedforward NNs) to reduce the weaknesses related to each method. WNs are one hidden layer 

networks, which adopt a wavelet as an activation function. The WNs have been effectively used in 

time series forecasting, (Cao et al. (1995); and Cristea et al. (2000)) and in short-term electricity prices 

forecasting (Bashir and El-Hawary (2000); Yao et al. (2000); Gao and Tsoukalas (2001); Benaouda et al. 

(2006); and Ulugammai et al. (2007), Pindoriya et al  (2009); and Mashud and Irena (2016)). To 

preserve the advantage related to the local capacity of the wavelet basis functions while not using 

many hidden layers, Chen et al. (2004) developed a new type of wavelet neural network termed the 

local linear wavelet neural network (LLWNN). Therefore, this network needs smaller wavelets for a 

given problem comparing to the wavelet neural networks. Several researchers for the electricity price 

forecasting have extensively used the LLWNN model (Pany (2011); Chakravarty et al. (2012); Pany et 

al. (2013); and Athanassios et al. (2015)). 

In the second approach, Boubaker (2015) include the GARCH model, suggested by Engle (1982) 

and Bollerslev (1986) in the k -factor GARMA adaptation taking into account time varying volatility. 

In another research, Boubaker and Boutahar (2011) suggest the k -factor GARMA-FIGARCH to 

estimate the long memory behavior in the conditional variance of the exchange rate. Nevertheless, 

these models are not fully satisfactory in the modelling the volatility of intra-daily financial time 

series. The main feature of such data is the strong evidence of cyclical patterns in the volatility. For 

this aim, Bordignon et al. (2007, 2010) suggested a new category of GARCH models characterized by 

periodic long memory behavior termed the generalized long memory GARCH (G-GARCH). In the 

literature, Bordignon et al. (2007) and Caporin and Lisi (2010) have applied G-GARCH process to 

estimate the financial series and Diongue et al. (2009) for modelling the electricity spot price. 

This paper focuses on resolving the issues of modeling and forecasting some feature of the 

electricity prices, notably the existing of the seasonal long memory behavior in the conditional mean 

and the conditional variance. In this vein, this paper provides three contributions. The main one is to 

improve the forecasting accuracy of the LLWNN model. This objective is achieved through using the 

wavelet theory to decompose the historical price, instead of introducing it directly to the Network and 

assess the effect of different levels of decomposition on forecasting accuracy. This technique can allow 

https://www.sciencedirect.com/science/article/pii/S0196890413007528#!
https://www.sciencedirect.com/science/article/pii/S0196890413007528#!
https://www.sciencedirect.com/science/article/pii/S0306261916304160#!
https://www.sciencedirect.com/science/article/pii/S0306261916304160#!
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22N.%20M.%22&searchWithin=%22Last%20Name%22:%22Pindoriya%22&newsearch=true
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the network to detect the existence of seasonal long memory behavior and thus better estimate the 

data, this novel network is termed WLLWNN. 

The rest of the paper is organized as follows; in the next section, we present a brief review of the 

literature. Section 2 present the econometric methodology which includes the theoretical concepts of 

the k -factor GARMA process, the wavelet local linear neural network model, illustrate the hybrid k -

factor GARMA-WLLWNN method and the k -factor GARMA-G-GARCH process which estimated 

using a wavelet estimation approach. Section 3 deals with the empirical framework, where the 

proposed hybrid model is applied to log-return of electricity spot price forecasting and its 

performance is compared with the individual WLLWNN model, model and the generalized long 

memory k -factor GARMA-G-GARCH model, and section 4 wrap up the conclusion. 

2. Methodology 

2.1 The GARMA model 

The k -frequency GARMA model generalizes the ARFIMA model, allowing periodic or quasi-

periodic movement in the data. Gray et al. (1989) proposed this model. The multiple frequency 

GARMA model is defined as follows 





k

i

tt

d

im LyLLIL im

1

2

, )()()2()( ,        (1) 

Where )(L  and )(L  are the polynomials of the delay operator L such that all the roots of )(z  

and )(z  lie outside the unit circle. The parameters im,  provide information about periodic 

movement in the conditional mean, t  is a white noise disturbance sequence with variance 
2

 , k  is a 

finite integer, 1, im , i 1, 2, ,k , imd ,  are long memory parameters of the conditional mean 

indicating how slowly the autocorrelations are damped,   is the mean of the process, 

)(cos ,

1

, imim   , i 1, 2, ,k , denote the Gegenbauer frequencies (G-frequencies). The GARMA 

model with k -frequency is stationary when 1, im , and 2/1, imd  or when 1, im  and 

4/1, imd , the model exhibits a long memory when 0, imd . For a GARMA model with a single 

frequency, when ,1 the model is reduced to an ARFIMA ),,( qdp  model, and when 1  and 

2/1d , the process is an ARIMA model. Finally, when 0d , we get a stationary ARMA model. 

Cheung (1993) determines the spectral density function and shows that for 0d the spectral density 

function has a pole at )(cos 1   , which varies in the interval  ,0 . It is important to note that 

when 1 , the spectral density function is bounded at the origin for GARMA processes, and thus 

does not suffer from many problems associated with ARFIMA models. 

2.2 The wavelet local linear wavelet neural network (WLLWNN) 

In this section, we propose novel neural network-based wavelet decomposition; this model 

contains into two steps. Firstly, the historical price data has been decomposed into wavelet domain 

constitutive sub series using wavelet decomposition and introduced, in the second step, into the 

network (LLWNN) to produce the set of input variables and form the proposed WLLWNN 

forecasting model. More precisely, in the first step, the historical price data has been decomposed into 

wavelet domain constitutive sub series using Wavelet Transform, since the electricity price series are 

highly volatile, corrupted by occasional spikes and follows by multiple seasonality’s. Hence, a price 

series exhibits richer structure and signal-processing techniques, as wavelet Transform is good tools to 
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bring out the hidden patterns in the prices. 

 

2.2.1  Theoretical concepts of wavelet decomposition 

 
Electricity price series exhibits specific features and riche structure; for this reason, signal-

processing techniques like Fourier Transfer, Wavelet Transfer are good candidates for bringing out 

hidden patterns in price series (Nicolaisen et al. (2000)). To tackle the problem related to the specific 

behavior of electricity price series, wavelets have been adopted since they can produce a good local 

representation of the signal in both frequency and time domains. Wavelet decomposition is applied 

for multi-scale analysis of the signal and decomposes the time series signal into one low-frequency 

sub-series (constitute the approximation part) and some high-frequency sub-series (constitute the 

detailed part) in the wavelet domain. These constitutive series have improved statistical properties 

than original price series and consequently, improved forecasting accuracy can be achieved by their 

suitable utilization. The basic point, using a dilation and translation operations, this technique allows 

a flexible time-frequency resolution, and can define local features of a given function in a 

parsimonious way. Wavelets are orthonormal bases attained through dyadically dilating and 

translating a pair of specially constructed functions denotes by   and  , which are named father 

wavelet and mother wavelet, respectively, given by 

 and ( t )dt 1 ( t )dt 0    .        (2) 

The smooth and the low-frequency part of the time series are detected by means of the father 

wavelet while the detail and the high-frequency components are defined by the mother wavelet. The 

obtained wavelet basis is 

        and j / 2 j j / 2 j

j ,k j ,kt 2 2 t k t 2 2 t k       .     (3) 

Where j 1, 2, ,J  indexes the scale and 
jk 1,2, ,2  indexes the translation. The parameter j is 

adopted as the dilation parameter of the wave’s functions. This parameter j  adjusts the support of 

 tkj ,  to locally detect the features of high or low frequencies. The parameter k  is employed to 

relocate the wavelets in the temporal scale. The number of observations limits the maximum number 

of scales that can be used in the analysis  JT 2 . The localization property is a special property of 

the wavelet expansion, where the coefficient of  tkj ,  reveals information content of the function at 

approximate location jk 2  and frequency 
j2 . By means of wavelets, any function in  2L  can be 

extended over the wavelet basis, exceptionally, as a linear combination at arbitrary level 0J   

through different scales of the type 

     



Jj k

kjkjkJ

k

kJ tdtstX ,,,, 00
        (4) 

Where kJ ,0
  a scaling function with the corresponding coarse scale coefficients kJs ,0

 and kjd , are the 

detail coefficients given respectively by     dtttXs kJkJ ,, 00
  and    j ,k j ,kd X t t dt  . These 

coefficients give a measure of the contribution of the corresponding wavelet to the function. The 

expression (8) denotes the decomposition of  tX  into orthogonal components at different resolutions 

and constitutes the wavelet multiresolution analysis (MRA). 

 

In practical applications, we invariably deal with sequences of values indexed by integers rather 

than functions defined over the entire real axis. Instead of actual wavelets, we use short sequences of 

values referred to as wavelet filters. The number of values in the sequence is termed the width of the 

wavelet filter. Hence, the wavelet analysis measured through a filtering perspective is then well suited 
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to time series analysis. The wavelet coefficients of the discrete wavelet transform, can be considered 

from the recursive MRA scheme, which is implemented by a two-channel filter bank (i.e. a high-pass 

wavelet filter  1,,0,  Llhl  and its associated low pass scaling filter  1,,0,  Llg l   

satisfying the quadrature mirror relationship given by   lL

l

l hg 


 1

1
1  for 1,,0  Ll  , where 

L  is the length of the filter) illustration of the wavelet transform, is divided into decomposition 

and reconstruction schemes referring to the forward and inverse wavelet transform. Daubechies 

(1992) defined a useful category of wavelet filters, termed the Daubechies compactly supported 

wavelet filters and distinguishes between two choices; the extremal phase filters  LD  and the least 

asymmetric filters  .LLa  

2.2.2 The local linear wavelet neural network (LLWNN) 

Chen et al. (2004) proposed a local linear wavelet neural network (LLWNN) for time series 

forecasting, and they have shown that this model has more accuracy than the traditional WNN. It 

comprises of input layer, hidden layer and linear output layer. The input data in the input layer of the 

network are directly transmitted into the wavelet layer. As the hidden layer neurons make use of 

wavelets as activation functions, these neurons are usually called ‘wavelons’. Instead of using 

multilayered neural networks and its several variants a WLLWNN is used for forecasting the next day 

and next week electric load in a deregulated environment. According to wavelet transformation 

theory, wavelets (used as an activation function) in the following form is a family of functions, 

generated from one single function  x  by the operation of dilation and translation. 

1/ 2 ni
i i i i

i

x b
( x ) a ; a ,b , i

a
  

   
     
   

      (5) 

 1 2 nx x , x , , x  

 i i1 i2 ina a ,a , , a  

 i i1 i2 inb b ,b , ,b  

)(x  is localized in both time space and the frequency space, is called a mother wavelet and the 

parameters ia  and ib  are the scale and translation parameters, respectively. Instead of the 

straightforward weight iw  (piecewise constant model), a linear model niniii xwxwwv  110  

is introduced. 

The activities of the linear models iv   i 1, 2, , n  are determined by the associated locally 

active wavelet functions )(xi   i 1, 2, , n , thus iv  is only locally significant. Non-linear wavelet 

basis functions (named wavelets) are localized in both time space and frequency space. Here nm   

and output  Y  of the proposed model is calculated as follows 

   
M

i0 i1 1 in n i

i 1

Y w w x w x x


            (6) 

The mother wavelet is  

2
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
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Where 2 2 2

1 2 nx d d d              (9) 



 
7 Energy Studies Review Vol 24 (1) 2020                 Boubaker, Souhir & Hichem     4135 

2.2.3 Learning Algorithms for optimizing the neural networks  

The back-propagation algorithm (BP)  

The BP is one of the most common learning algorithms in training the neural networks. At the 

beginning, the parameters are randomly initialized, and then the algorithm measures the error 

between the output value and the real value, and finally adjusts the weights in the direction of 

descendent gradient. The learning rate controls the speed of the training process. If this rate is high, 

the ANN model will learn quicker, but the learning process will never converge if this rate is too high. 

In contrast, if the learning rate is so low, the ANN model may converge to a local minimum instead of 

the global minimum. The equations of the BP algorithm are presented in detail in (Burton and Harley 

(1994)) and they are briefly described below.  

The objective function to minimize is given as 

t 1,0 1 1,1 1 1 l ,0 l l ,1 1 l l ,p p l

1
E y ( x ) p ( x ) ... ( x ) p ( x ) ... p ( x )

2
                    (10) 

Where ty is the desired value, )(x is the active wavelet functions, 0,1  represent the connection 

weight, p is the number of input ( i 1, , p ) and l is the number of the hidden units ( j 1, ,l ) . 

The weight is updated from thi  to the 
thi )1(  iteration, that is from t  to 1t is given by 















t

t
tttt

E
r


 1 ,            (11) 

Denote that r  is the learning rate adopted in the LLWNN model, where 


E
 for all weights are 

described by the following equations 
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The other weights are also updated in the same way. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.B.%20Burton.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.G.%20Harley.QT.&newsearch=true
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The particle swarm optimization algorithm (PSO) 

Kennedy and Eberhart (1995) developed the PSO as an optimization technique. In comparison 

with other learning algorithms, the PSO clearly proved its efficiency. PSO algorithm is established 

through simulation of bird flocking in two-dimension space. The position of each agent is denoted 

by XY  axis position and the velocity are represented by vx  and vy . The agent position’s adjustment 

is recognised by the position and the velocity information. The Bird flocking optimizes the objective 

function. Each agent knows its best value so far  pbest  and its XY  position. In addition, each agent 

knows the best value so far in the group  gbest  among  pbest . Mainly each agent tries to adjust its 

position using the following information.  

1 The distance between current position and pbest .  

2 The distance between the current position and gbest .  

Velocity of each agent can be updated by the following equation 

)()( 22111

1 p

i

p

i

p

i

p

i sgbestrandcspbestrandcwvv       (18) 

Where p

iv is the velocity of agent i  at iteration p , w  is the weight function, 
jc  is weighting factor, 

p

is is the current position of agent i  at iteration p , ipbest  is the pbest  of agent i and gbest  is the 

gbest  of the group. The velocity, which progressively gets close to pbest  and gbest  can be 

computed using the above equation. The actual position, which characterises the searching point in 

the solution space, can be updated using the following equation 
11   p

i

pp

i vss           (19) 

The first term of equation (18), denote the previous velocity of the agent. The velocity of the agent is 

updated through the second and third terms.  

The general steps, which describe the optimization of the LLWNN using the PSO algorithm, can be 

demonstrated as follows:  

Step.1 The initial condition is generated for each agent:  

The initial searching points ( 0

is ) and velocity )( 0

iv of each agent are habitually generated randomly 

within the allowable range. Note that the dimension of search space contains all the parameters of the 

LLWNN (equation 6).  

The current searching point is set to pbest  for each agent. The best-evaluated value of pbest   is set to 

gbest   and the agent number with the best value is stored.  

Step.2 The searching points are evaluated for each agent:  

The value of the objective function is calculated for each agent. If this calculated value is improved in 

comparison with the current pbest  of the agent, the pbest  value is replaced by the current value. If 

the best value of pbest  is better than the current gbest , gbest  is replaced by the best value and the 

agent number corresponding to the best value is stored.  

Step.3 Modification of each searching point:  

Using equations (18) and (19), the actual searching point of each agent is updated.  

Step.4 Verification of the exit condition:  

If the number of the current iteration reaches the number of the predetermined maximum iteration, 

then exit; If else; go to step 2. 

Contrary to the BP, the PSO algorithm avoids the convergence to a local minimum, since it is 

not founded on gradient information (Abbass et al. (2001)). The objective of the PSO is to produce the 

best set of weights (particle position) where numerous particles are moving to get the best solution, 

where the total number of weights characterizes the dimension of the search space.  
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2.3 The hybrid k-factor GARMA-WLLWNN model 

Our hybrid methodology combines a semi parametric k -factor GARMA model and the proposed 

WLLWNN model. The choice of WLLWNN in the hybrid process is inspired by the wavelet 

decomposition and its local linear modeling ability. Our approach consists into two steps; in the first 

step, the aim is modeling the conditional mean using a semi parametric k -factor GARMA model. 

Conversely, residuals are important in forecasting time series; they may contain some information that 

is able to improve forecasting performance. Thus, in the second step, the residuals resulting from the 

first step will be treated according to a novel wavelet local linear wavelet neural network (WLLWNN) 

model. 

Hence, a time series can be written as 

ttty               (20) 

Where t  denote the conditional mean of the time series, and t  is the residuals. Firstly, the main 

aim is the parametric modelling, therefore the k -factor GARMA model is used to reproduce the 

conditional mean (equation 1). Secondly, the residuals from the parametric model are used as a proxy 

for the corresponding volatility and modeled using the WLLWNN approach.  

Let t  denote the residuals at time t  from the k -factor GARMA model, then 

ttt y  ˆ             (21) 

Where t̂  is the forecast value from the estimated relationship (equation 1). 

Then, the forecast values and the residuals of the semi-parametric modelling are the results of 

the first stage. In the second stage, the aim is the modelling of the residuals using the WLLWNN with 

n input nodes, the WLLWNN for the residuals is: 

 ntttt f   ,, 21          (22) 

Where each it is decomposed using the Wavelet Transform (equation 4), f  is a non-linear, non-

parametric function determined by the neural network with the reference to the current state of the 

data, during the training of the neural network. The output layer of the network (equation 6) gives the 

forecasting results; 

ttty  ˆˆˆ              (23) 

Hence, this global prediction, represent the result of forecasting both, the conditional mean and the 

conditional variance of the time series. 

2.4 The k-factor GARMA-G-GARCH model 

The k -frequency GARMA model assumes that the conditional variance is constant over time. In 

the empirical studies, it is well recognized that many time series often exhibit volatility clustering, 

where time series exhibit both high and low periods of volatility. To reproduce these patterns, we 

extended the k -factor GARMA model described above by inserting a fractional filter in the 

conditional variance equation. For this reason, we propose the dual generalized k -factor GARMA-G-

GARCH model that can capture seasonality and long memory dependence in both the conditional 

mean and the conditional variance. 

The fundamental idea of this model is to include the generalized long-memory process into the 

equation describing the evolution of conditional variance in a GARCH framework. That is why this 

new class of models is called Gegenbauer-GARCH (G-GARCH). Thus, we consider the following k -

factor GARMA process with G-GARCH type innovations to consider the presence of a time varying 

conditional variance 

tttttt zy            (24) 
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Where t  is the conditional mean of ty  modelling using the following k -factor GARMA model:  





k

i

tt

d

im LyLLIL im

1

2

, )()()2()( ,          (25) 

 2

t t 1 t/ I 0,  D               (26) 

Where 2

t  is the conditional variance, 1tI  being the information up to time 1t , tz  is a dii ..  

random variable with zero mean and unitary variance and  D  is a probability density function. 

To specify the dynamics of the conditional variance, the starting point is the dynamics of 2

t . 

We assume that 2

t  follow a k -factor GARMA model, which describes a cyclical pattern of length S  

    tt
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EIdd
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   (27) 

  ttv LILLP  )()()( 2             (28) 
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1)(  are suitable polynomials in the lag operator L  

and 22

ttt    is a martingale difference, ,2/0, vv dd   1)( EI  if S  is even and zero otherwise. 

With this assumption, the corresponding GARCH-type dynamics for conditional variance is given by; 
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 (29) 

This implies that in the G-GARCH framework each frequency has been modelled by means of a 

specific long-memory parameter ivd ,  (differencing parameter of the conditional variance). 

When kvvv ddd ,1,0,   , all the involved frequencies have the same degree of memory. Model 

(29) may provide, cases, most of the existing GARCH models. For example, standard GARCH models 

(included seasonal GARCH (Bollerslev and Hodrick 1992) can be obtained by putting 

v,id 0, i 0,1, , k  . Similarly, the FIGARCH model is equivalent to 1S  and 10 0,  vd . It is 

interesting to mention that generalized long-memory filters, in principle, may be applied to any 

category of GARCH structure. Nonetheless, due to the constraints needed for conditional variance 

positivity, G-GARCH models are not always feasible, for this reason, Bordignon et al. (2007) proposed 

to model the logarithm of the conditional variances. Therefore, a practical computing solution is to 

apply the filter to a generalized log-GARCH model.  This means beginning from the expression 

    ttv LILLP  )()ln()()( 2            (30) 

Where )(LPv  is the generalized long memory filter introduced into a GARCH structure, 

)ln()ln( 22

ttt    is a martingale difference and  ))(ln( 2

tzE . The expected   value 

depends on the distribution of the idiosyncratic shock and ensures that t  is a martingale difference, 

given that )ln()ln()ln( 222

ttt z  . Under the Gaussian assumption 1.27   . The expression for 

conditional variance implied by (33) is 

    )ln()()()()ln()()ln( 222

tvtt LLPLIL      (31) 

Since we are modelling )ln( 2

t  instead of 2

t , no constraints for variance positivity are necessary. A 

further approach of bypassing the problem of parameter constraints is to adopt EGARCH versions of 

our model. 
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To sum up, the aim of this study consists in modelling the different patterns in the electricity time 

series to provide the best forecasting methods. For this purpose, we exploit a hybrid methodology 

based in combining the semi parametric k -factor GARMA model with a novel neural network named 

the WLLWNN model. The performances of the proposed hybrid k -factor GARMA-WLLWNN model 

is evaluated using data from Polish Electricity markets and compared with the dual generalized long 

memory k -factor GARMA-G-GARCH model and the individual WLLWNN, in order to prove the 

robustness of our proposed hybrid model. 

3. Empirical Methodology 

3.1 Data description  

The data considered are hourly spot prices on the Polish electricity market, covering the period 

between 1st of June 2017 and 31st of December 2017, in total N 5137  hourly observations, illustrated 

in Figure 1. This series are obtained from the official website of Polish Power Exchange market. In this 

study, we consider data in the first difference logarithm to makes the series stationary and allows to 

model returns series ( tt LogPR  ). Therefore, we analyze the log-return electricity spot price series, 

to study their statistical and econometric features.  

 
Figure 1. Polish electricity log returns 

 

Figure 1 indicates that the log returns series is stationary. This hypothesis can also be 

confirmed by the unit root tests (ADF, PP and KPSS). Also, this figure suggests the presence of 

clustering volatility indicating ARCH effect in the series.  

 
Table 1. Descriptive statistics of the spot prices time series (log-returns) 

The log-returns Electricity price 

Mean  51.5573 10   

Standard deviation 0.1093 

Skewness  -0.2814 

Kurtosis  36.2357 

Jarque-Bera  52.8116 10 ***  

Note: levels of significance are indicated between squared brackets. *** denotes significance at 1% level. 
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Descriptive statistics of the log returns data are described in Table 1. The standard deviation is 

quite small, while the estimated measure of Skewness indicating a non-symmetric distribution. 

Besides, the large value of the kurtosis statistic, suggests that the underlying data are leptokurtic. This 

significant departure from normality is also confirmed by the large value of the Jarque-Bera (JB) test. 

Hence, the electricity spot price series is not normally distributed. 

 

Table 2. Stationarity test of log-returns series 

 Model (1) 

With an intercept and a trend 

Model (2) 

With an intercept 

Model (3) 

Without an intercept 

ADF 

t-Statistic 

 

-39.6382 

(0.0000)*** 

-39.6418 

(0.0000)*** 

-39.6457 

 (0.0000)*** 

PP 

t-Statistic 

 

-38.7042 

(0.0000)*** 

-38.8002 

(0.0000)*** 

-38.9822 

 (0.0000)*** 

KPSS 

t-Statistic 

0.0008 

(0.0000)*** 

0.0013 

(0.0000)*** 

 

- 

Notes: levels of significance are indicated between squared brackets. *** denotes significance at 1% level. 

 

We tested for stationary by performing unit root tests, namely, the augmented Dickey-Fuller 

(ADF, 1976), the Phillips-Perron (PP, 1988) and Kwiatkowski et al. (KPSS, 1992) tests, to the Poland 

log-returns electricity price. These tests differ in the null hypothesis. The null hypothesis of the ADF 

and PP tests is that a time series contains a unit root, while the KPSS test has the null hypothesis of 

stationary. The results of these tests are reported in Table 2; indicating the reject of the hypothesis of 

non-stationary. 

As also illustrated by Figure 2, for the Log-return electricity price series, the spectral density, 

traced by the periodogram, presents several peaks at equidistant frequencies, which proves the 

presence of many seasonality’s. 

 

 

 

 
Figure 2. Polish L-REP ACF & Periodogram 
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Using the GPH (Geweke and Porter-Hudak, (1983)) and LW (Robinson, (1995)) statistics, we 

test for the long-range persistence in the conditional mean. Corresponding results shown in Table 3 

indicate evidence of long memory. 

 

Table 3. Results of GPH and LW long-range dependence tests in the conditional mean 

 

L-REP 

T=5137 

 

Bandwidth 

GPH LW 

md̂  Standard 

error 

p-value 
md̂  Standard 

error 

p-value 

6.0T =168 -0.5143 0.0523 0.0000 -0.5458 0.0385 0.0000 

7.0T =395 -0.6022 0.0332 0.0000 -0.8150 0.0251 0.0000 

8.0T =930 -0.4866 0.0214 0.0000 -0.5894 0.0163 0.0000 

3.2 Estimation Results 

 The k -factor GARMA estimation results 

The seasonality can be easily observed in the frequency domain Ti /1 ; where  is the 

frequency of the seasonality and T  is the period of seasonality. As shown the spectral densities, 

represented by periodogram (see Figure 2), are unbounded at equidistant frequencies, which proves 

presence of multiple seasonality’s. They show special peaks at frequencies m;1
ˆ 0.0325   (T 30.76  

  30 hour, 45 min   1 day), m,2
ˆ 0.0904   (T 11.07 =11 hours 1/2 day), and m,3

ˆ 0.1839   

(T 5.44 =5 hours, 37 min ≈ 1/4 day), corresponding to cycles with daily, semi-daily and quarter-

daily periods, respectively. 

 

Table 4. Estimation of the k-factor GARMA model: a wavelet-based approach 

Parameters k -factor GARMA model estimation 

̂  0.5132*** 

̂  - 

  - 

1,
ˆ

md  0.1675*** 

2,
ˆ

md  0.2286*** 

3,
ˆ

md  0.4234*** 

1;
ˆ

m  0.0325*** 

2,
ˆ
m  0.0904*** 

3,
ˆ

m  0.1839*** 

 

In second step, we propose to model the conditional variance, so the residuals of the k -factor 

GARMA estimation are shaped through a novel WLLWNN as a first approach and then treated using 

the generalized GARCH model termed G-GARCH as a second approach, to select the adequate 

method.  

 

 The WLLWNN estimation results 

The residuals obtained from the k -factor GARMA are considered here as the input of the novel 

WLLWNN to estimate the conditional variance. For the purpose to avoid the possibility of coupling 

among different input and to accelerate convergence, all the inputs are normalized within a range of 
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[0, 1] using the following formula before applying it to the network, which considered as the most 

commonly used data smoothing method 

minmax

min

yy

yy
y

org

norm



              (32) 

Where normy  is the normalized value, orgy  is the original value, 
miny  and maxy  are the minimum and 

maximum values of the corresponding residuals data.  

 

 Wavelet decomposition 

These normalized data are then decomposed using the MODWT with Daubechies least 

asymmetric  La  wavelet filter of length 8L  ( )8(La ). This wavelet filter has been frequently 

adopted in the financial literature and it has been proved that  La 8 1 provides the best performance 

for the wavelet time series decomposition. Our MODWT decomposition goes up to level J 12  that 

is specified by, 










 1

1
log 2

L

T
J  i.e. Where T represent the length of the given time series and L  

denote the length of the filter (Percival and Walden (2000); and Gençay et al. (2002)). The time series is 

decomposed into 12 details. 

 

 The LLWNN modeling 

The datasets are presented as follows: (a) A sample of 500 observations to initialize the network 

training, (b) a training set (4565 observations) and (c) a test set (72 observations). The forecasting 

experiment is performed over the test set using an iterative forecasting scheme, the model is 

forecasting for 6, 12, 24, 48 and 72 hours ahead. Details of the datasets are illustrated in the Figure 3.  

 

 
Figure 3. Details of datasets 

 

To find the best neural network architecture, at the beginning the parameters are randomly 

initialized. Subsequently, using two different algorithms: The Back-Propagation algorithm (BP) and 

the Particle Swarm Optimization Algorithm (PSO); these parameters are optimized in order to 

minimize the error between the output values and the real values during the training of the network. 

Table 5 and Table 6 provide the summary of information related to the network architecture. 

                                                 
1 As there are no universal selection criteria of the type of wavelets and their width, this choice should be 

imposed by the objective in order to balance two considerations. Firstly, wavelet filters of too short width can 

present undesirable artifacts into the multi-resolution analysis. Secondly, the impact of boundary conditions 

becomes more severe and the localization of MODWT coefficients decreases. For more details concerning this 

wavelet filter see Daubechies (1992) and Gençay et al. (2002). 
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Table 5. LLWNN based BP Algorithm architecture 

Number of hidden layer 10 

Learning rate  0.5 

Layer conversion function Wavelet Function 

Algorithm Back Propagation (BP) Learning Algorithm 

Parameters adopted for running PSO are presented in Table 6. 

Table 6. LLWNN based PSO Algorithm architecture 

Number of populations 20 

Number of generations 200 

21 , CC  1.05 

Maximum velocity 1 

Minimum velocity 0.3 

Number of hidden layers 10 

Learning rate 0.5 

Layer Activation function Wavelet Function 

 The k -factor GARMA-G-GARCH estimation results 

As shown in Figure 4, for the residuals of the k -factor GARMA model, the spectral density 

presents many peaks at equidistant frequencies, which proves the presence of multiple seasonality’s. 

In addition, the squared log-returns are used as a proxy of the corresponding volatility. Long memory 

tests are performed for the resulted time series. As reported in Table 7, the results of the GPH and LW 

indicate the presence of long memory in the conditional variance.  

 
Figure 4. Periodogram of the residuals of the k -factor GARMA model 

 

Table 7. Results of GPH and LW long-range dependence tests in the conditional variance 

 

 

L-REP 

T=5137 

 

Bandwidth 

GPH LW 

vd̂  Standard 

error 

p-value 
vd̂  Standard 

error 

p-value 

6.0T =168 0.5356 0.0523 0.0000 0.5137 0.0385 0.0000 
7.0T =395 0.3566 0.0334 0.0000 0.3923 0.0251 0.0000 
8.0T =930 0.2154 0.0216 0.0000 0.2651 0.0251 0.0000 
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The residuals from the k -factor GARMA are modelled based on the G-GARCH process to estimate 

the seasonal long memory behaviour in the conditional variance. The estimation results of the k -

factor GARMA-G-GARCH model are reported in Table 8 

Table 8. The k -factor GARMA-G-GARCH Estimation Results 

k -factor GARMA model estimation The G-GARCH model estimation 

̂  0.6458*** ̂  0.7250*** 

̂  - ̂  0.5451*** 

  - ̂  - 

1,
ˆ

md  0.1635*** 
1,

ˆ
vd  0.1482*** 

2,
ˆ

md  0.2486*** 
2,

ˆ
vd  0.2617*** 

3,
ˆ

md  0.4185*** 
3,

ˆ
vd  - 

1;
ˆ

m  0.0361*** 
1;

ˆ
v  0.0432*** 

2,
ˆ
m  0.0876*** 

2,
ˆ
v  0.1072*** 

3,
ˆ

m  0.1951*** 
3,

ˆ
v  - 

The spectral densities, represented by periodogram (Figure 4), are unbounded at equidistant 

frequencies, which prove presence of several seasonality’s. They show special peaks at frequencies 

v;1
ˆ 0.0432   (T=23h, 8 min 1 day), and v,2

ˆ 0.1072   (T=9h, 20 min   1/3 day), that 

corresponding to cycles with daily and third-daily periods, respectively. 

3.3 Forecasting Results 

To evaluate models in a multi-step-ahead forecasting task, we prefer to apply out-of-sample 

criteria. Therefore, five different periods (6 hours, 12 hours, one day, two days and tree days) were 

chosen to confirm the quality and the robustness of modeling and forecasting findings. To appraise 

the forecasting accuracy, two evaluation criteria was applied, the Mean Absolute Error ( MAE ) and 

the Mean Squared Error ( MSE ), given respectively by: 

 


 



N

tt

httht yy
tN
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1
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1
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         (33) 
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1

         (34) 

Where N  is the number of observations, 1N t  is the number of observations for predictive 

performance, t hy  is the log-return series through period ht  , htty ,
ˆ  is the predictive log-return 

series of the predictive horizon h  at time t . 

To assess the prediction performance of the proposed hybrid methodology, the k -factor GARMA-

WLLWNN was compared with two models: the individual WLLWNN model and the k -factor 

GARMA-G-GARCH model. Concerning the training of the network, we adopted two different 

learning algorithms (BP and PSO). Furthermore, we adopted five-time horizons; 6 hours, 12 hours, 

one day, 2 days and 3 days ahead forecasting, using the MAE  and the MSE  out of sample criteria. 

Further, we also apply the statistical test of Diebold and Mariano (1995) and say that the forecasts 

have equal accuracy. Under the null hypothesis of no difference, the test statistics noted ( DM ) is 

asymptotically  N 0,1  distributed. To evaluate the performance of hybrid methodology forecast, we 



 
17 Energy Studies Review Vol 24 (1) 2020                 Boubaker, Souhir & Hichem     4135 

consider the k -factor GARMA-G-GARCH model for purpose of comparison between the forecast 

results of all other models. The forecast findings are given in Table 9. 

Results reveal that the individual WLLWNN based PSO algorithm outperforms the individual 

WLLWNN based BP algorithm; this result prove the superiority of the PSO algorithm for training 

neural network model. This result can be explained by the fact that in the case of the BP algorithms 

weights are updated in the direction of the negative gradient. Hence, the network training with BP 

algorithms present some drawbacks such as very slow convergence to a local minimum. Nevertheless, 

in the case of training with PSO algorithm, weights are characterized by particles position. These 

particles velocity and position are updated, to search for personal best and global best values. This 

will avoid the convergence of weights to a local minimum. 

Furthermore, we observe from Table 9 that the hybrid k -factor GARMA-WLLWNN model 

outperforms all other computing techniques. In fact, this model uses the strength of three techniques 

at the same time; firstly, the semi-parametric k -factor GARMA model that allows detecting and 

estimating both the long memory and the seasonality in the conditional mean. Secondly, the wavelet 

decomposition, which can produce a good local representation of the signal in both time and 

frequency domains and hence it’s a good tool to bring out the hidden patterns in the electricity prices, 

such as high volatility, corrupted by occasional spikes and follows by multiple seasonality’s. Finally, 

with the capacity of the LLWNN model as a nonlinear, nonparametric model, and its particularity by 

having a wavelet activation function and local linearity, this network can capture more subtle aspects 

of the data. Hence, the proposed hybrid k -factor GARMA-WLLWNN is a robust tool that can be deal 

with the features of the electricity prices and provide the best forecasting results. 

As shown in Figures 5, the predictions of the k -factor GARMA-WLLWNN model based PSO 

algorithm for all the five horizons are very close to the real values. That is confirm the forecasting 

results (Table 9), which indicate that the k -factor GARMA-WLLWNN process prediction errors are 

the smallest for all evaluation criteria and for all forecast time horizons. 

 

Table 9. Out of sample Forecasts Results 

Models Criterion  6h  12h  24h  48h  72h  

WLLWNN based 

BP Algorithm 
MAE  

MSE  

DM  

56.3201 10  
94.0121 10  

1.1534 

51.9792 10  
102.0457 10  

1.2752 

57.3147 10  
95.6173 10  

1.3684 

41.0438 10  
81.2343 10  

1.4943 

42.9156 10  
87.2376 10  

1.6109 

WLLWNN based 

PSO Algorithm 
MAE  

MSE  

DM  

72.3212 10  
146.9811 10  

1.3461 

73.8692 10  
132.1145 10  

1.5272 

79.9865 10  
121.1824 10  

1.6234 

72.7763 10  
131.1458 10  

1.9375 

73.7975 10  
132.1278 10  

2.0154 

The hybrid k -

factor GARMA-

WLLWNN based 

BP Algorithm 

MAE  

MSE  

DM  

54.2367 10  
91.8561 10  

1.9784 

51.4132 10  
101.8937 10  

2.3256 

56.3552 10  
94.8539 10  

2.7631 

57.7246 10  
97.0336 10  

2.9464 

58.9543 10  
99.1357 10  

3.2546 

The hybrid k -

factor GARMA-

WLLWNN based 

PSO Algorithm 

MAE  

MSE  

DM  

91.4251 10  
182.0723 10  

2.5671 

81.9542 10  
165.1127 10  

2.9653 

93.2757 10  
171.4121 10  

3.4378 

94.2489 10  
172.7442 10  

3.6647 

82.2146 10  
167.6058 10  

3.8651 

The k -factor 

GARMA-G-

GARCH model 
MAE  

MSE  

57.4673 10  
144.5632 10  

57.8461 10  
149.5362 10  

73.7852 10  
151.8457 10  

84.6834 10  
152.3387 10  

85.1289 10  
153.7826 10  
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Forecasting with the k-factor GARMA-WLLWNN based PSO h=72 hours 

 

 

 
Forecasting with the k-factor GARMA-WLLWNN based PSO h=48 hours 

 

 

 

 
Forecasting with the k-factor GARMA-WLLWNN based PSO h=24 hours  
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Forecasting with the k-factor GARMA-WLLWNN based PSO h=12 hour 

 

s 

 

Forecasting with the k-factor GARMA-WLLWNN based PSO h=6 hours 

Figure 5. Forecasting Polish electricity price using the hybrid GARMA-WLLWNN based PSO 

4. Conclusion 

In this paper, we develop a combining approach for electricity price forecasting, using jointly the 

parametric k -factor GARMA and the novel WLLWNN models. Our new hybrid approach consists into 

two steps; firstly, the k -factor GARMA model is adopted to estimate the conditional mean of the time 

series, since its able to estimate the periodic long memory behavior in the data. Secondly, the residuals 

from the k -factor GARMA process are used as a proxy for the corresponding volatility and are 

estimated based on a novel Neural Network termed the Wavelet Local Linear Neural Network 

(WLLWNN) model. In this network, the data has been decomposed into wavelet domain constitutive 

sub series using Wavelet Transform and then introduced into the network to produce the set of input 

variables and form the proposed WLLWNN forecasting model. On the other hand, when we deal with 

neural networks it is very important to choose an appropriate algorithm for training, so this paper 

presents a comparison of two learning algorithms; the BP and PSO algorithms. 

The performance of the proposed hybrid model is evaluated using data from Polish Electricity 

markets. Moreover, it is compared with the dual generalized long memory k -factor GARMA-G-

GARCH model, and the individual WLLWNN, to prove the robustness of our proposed hybrid 

model. The empirical results prove that the proposed k -factor GARMA-WLLWNN method is the 

most suitable price forecasting technique. Since, it is can produce smaller predicting errors than the 

other computing techniques. It may consider as a powerful forecasting method, notably when we 

need higher forecasting accuracy. 
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